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Abstract
A simple one-dimensional quantum system with two attractive δ-function
potentials of strength q at x ±1 is subjected to a spatially asymmetric (as in the
dipole interaction) harmonic forcing with frequency ω. The time evolution of
the system, which has two discrete energy levels −ωs < −ωa (depending on q)
and a continuum spectrum, exhibits a rich dynamics including regimes where
the rate of ionization becomes very small due to the ‘inverse’ Ramsauer effect
in electron–atom collisions. The two-photon ionization with ω ≈ ωs/2 can be
enhanced when ωa = ωs/2 though the one-photon ionization is not affected
significantly by the location of excited level. When ω is very close to the one-
or two-photon resonance the ionization rate can differ greatly from that given
by the low order perturbation theory even for small forcing amplitude. This is
caused in part by the fact that the dynamic Stark effect has a strong dependence
on ω and may shift the resonance frequencies ωs, ωa up and down. When the
ground state decays faster than the excited state and ω is not close to ωs − ωa ,
the excited level at late times becomes and remains more populated than the
ground state. The occupations of the bound states oscillate with a frequency
that can be quite low compared with ω, in particular in the case ω ≈ ωa ≈ ωs/2,
but it approaches ω when ω � ωs .

Our analysis is based on the analytic structure of the wavefunction’s
Laplace transform in time. It considers one- and two-‘photon’ processes; the
higher order multiphoton processes can also be treated by our computational
scheme which goes beyond the low order perturbation theory.

PACS numbers: 32.80.Fb, 03.65.Ge, 32.60.+i, 31.15.Ar

1. Introduction

The excitation and ionization of atomic and molecular electronic states by external microwave
and laser fields is well described by considering a quantum system interacting with a classical
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field. While there are many successful numerical and perturbative ways of analysing the
behaviour of such systems [1] it is still useful, we believe, to study these phenomena using
simplified model systems. This allows us to isolate the contribution of different features of
such systems to experimental observations.

Following [2], we studied in [3–5] a one-dimensional model when a particle bound by
a delta-function attractive potential is perturbed by a harmonic oscillation of the strength of
the delta function. Our non-perturbative analysis showed that the ionization of this system
exhibits a non-monotonic behaviour in the frequency and amplitude of perturbation similar
to the dynamics of real atoms in electromagnetic fields. We also found that the decay of
bound states has both exponential and power-law time dependence and that at resonances
the decay is sometimes far from exponential. Similar results were obtained for other model
systems in [1, 6] and they strongly suggest that the dynamics of ionization has a universal
character.

In this work, we extend the analyses [3–5] and [2, 7] to systems having more than
one bound state in order to study the interplay between inter-level transitions and ionization
(transitions to the continuum) induced by a strong periodic forcing [8]. We are particularly
interested in understanding how these transitions are affected by the level spacing for different
strengths and frequencies of the external force including situations involving multiphoton
processes (see [9]). For a detailed analysis, we want to get a reliable analytical solution of
the problem at least for the one- and two-photon ionization. This requires us, as in [3–5],
to go beyond the perturbation theory and use controllable approximations. As an interesting
by-product of our modelling we demonstrate how the ionization dynamics might be affected
by the Ramsauer resonance, a phenomenon, well known in atomic collisions [10, 11].

The model we study is a simple 1D ‘molecule’ with a Hamiltonian

H0 = − ∂2

∂x2
+ V0(x), V0(x) = −q[δ(x + 1) + δ(x − 1)], q > 0, −∞ < x < ∞,

(1)

whose double well potential V0 is perturbed by a time periodic potential V1(x) sin ωt . The
natural form of V1(x) is of course the dipole potential Ex, but for the reasons described above
we shall instead consider a much simpler form of the same symmetry, namely

V1(x) = qr[δ(x − 1) − δ(x + 1)]. (2)

In the absence of V1 the system with Hamiltonian H0 has two bound states when q > 1 but
only one if 0 < q < 1. It also has continuum states with energies k2. Starting with the system
in some initial bound state(s) at t = 0, the evolution of the wavefunction ψ(x, t) is governed
by the Schröedinger equation

i
∂

∂t
ψ(x, t) = [H0 + V1(x) sin ωt]ψ(x, t), t � 0. (3)

We expect the present model to exhibit certain universal features of the ionization of real
atoms (molecular dissociation) interacting with external electromagnetic fields, in which the
internal structure of the system is important. A comparison of our analysis with the standard
perturbation theory will be given in section 6.

We use the dimensionless units, h̄ = 2me = a = 1, where me is the particle mass and 2a

is the space separation of our double well potential. The single parameter q in (1, 2) absorbs
the strength of potential and this spacing; therefore the change of q can be attributed to one or
both of these quantities.
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2. The reference system

The continuum symmetric normalized eigenfunctions of the Hamiltonian H0 are

ϕs(k, x) = 1√
π




cos(k + φk)

cos(k)
cos(kx), if |x| � 1,

cos(k|x| + φk), if |x| > 1,

(4)

where

tan(k + φk) = tan k + q/k, k � 0.

The symmetric bound state, which exists for all q > 0, has the form

us(x) = α√
2γ − q


e−γ

cosh(γ x)

cosh(γ )
, if |x| � 1,

e−γ |x|, if |x| > 1.

(5)

This is the ground state of the system with energy −ωs = −γ 2, where

2γ

1 + e−2γ
= q, and α = γ√

1 + 2γ − q
. (6)

The antisymmetric wavefunctions of the continuum spectrum are of the form

ϕa(k, x) = 1√
π




sin(k + µk)

sin(k)
sin(kx), if |x| � 1,

sign(x) sin(k|x| + µk), if |x| > 1,

(7)

where

cot(k + µk) = cot(k) − q/k.

The system has, for q > 1, an excited antisymmetric bound state with energy −ωa = −λ2

and the eigenfunction

ua(x) = β√
q − 2λ


e−λ

sinh(λx)

sinh(λ)
, if |x| � 1,

sign(x) e−λ|x|, if |x| > 1,

(8)

where
2λ

1 − e−2λ
= q and β = λ√

1 + q − 2λ
. (9)

Equations (9) have no real solutions when q < 1. We shall take q > 1 from now on.
The ratio of the binding energies λ2/γ 2 grows monotonically from zero to 1 when q grows

from 1 to ∞. Thus, we can place the excited level anywhere between the ground state and the
continuum by changing q. In particular when q = 1 + ε, (0 < ε � 1) λ ≈ ε and γ ≈ 0.64
while if q ≈ 1.9638 then γ ≈ 1.0924 ≈ √

2λ, i.e. the excited bound state is equidistant from
the ground state and the continuum, (compare (6) and (9)).

3. Time evolution of the forced system

We expand the solution of Schröedinger’s equation (3) in terms of the eigenfunctions of H0

ψ(x, t) = θs(t)us(x) eiωs t + θa(t)ua(x) eiωat

+
∫ ∞

0
[�s(k, t)ϕs(k, x) + �a(k, t)ϕa(k, x)] e−ik2t dk.
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Assuming that the particle is initially bound,

ψ(x, 0) = θ0
s us(x) + θ0

a ua(x),
∣∣θ0

s

∣∣2
+

∣∣θ0
a

∣∣2 = 1, �s(k, 0) = �a(k, 0) = 0,

(10)

and substituting ψ(x, t) into equation (3), we obtain an expression for the expansion
coefficients

θs(t) = θ0
s − 2iα

∫ t

0
e−iγ 2t ′Y +(t ′) dt ′, θa(t) = θ0

a − 2iβ
∫ t

0
e−iλ2t ′Y−(t ′) dt ′, (11)

�s(k, t) = − 2i
√

q/π√
1 + (tan k + q/k)2

∫ t

0
eik2t ′Y +(t ′) dt ′,

�a(k, t) = − 2i
√

q/π√
1 + (cot k − q/k)2

∫ t

0
eik2t ′Y−(t ′) dt ′.

(12)

The functions

Y±(t) = √
qr sin ωt[ψ(1, t) ∓ ψ(−1, t)]/2 (13)

are to be found from two coupled integral equations

Y−(t) = r sin ωt

[
αθ0

s eiγ 2t − 2i
∫ t

0
Ks(t − t ′)Y +(t ′) dx ′

]
,

Y +(t) = r sin ωt

[
βθ0

a eiλ2t − 2i
∫ t

0
Ka(t − t ′)Y−(t ′) dt ′

]
,

(14)

whose kernels are

Ks(t) = α2 eiγ 2t +
q

π

∫ ∞

0

e−ik2t

1 + (tan k + q/k)2
dk,

Ka(t) = β2 eiλ2t +
q

π

∫ ∞

0

e−ik2t

1 + (cot k − q/k)2
dk.

(15)

Let F̃ (p) be the Laplace transform of a function F(t), defined for Re p > 0 by

F̃ (p) =
∫ ∞

0
e−ptF (t) dt. (16)

Then taking the Laplace transform of equations (14), (15) yields recurrence relations for Y±

in the form

r−1Ỹ−(p) = ωαθ0
s

(p − iγ 2)2 + ω2
+ K̃s(p + iω)Ỹ +(p + iω) − K̃s(p − iω)Ỹ +(p − iω), (17a)

r−1Ỹ +(p) = ωαθ0
a

(p − iλ2)2 + ω2
+ K̃a(p + iω)Ỹ−(p + iω) − K̃a(p − iω)Ỹ−(p − iω). (17b)

The functions K̃(p) can be evaluated exactly (assuming Im
√

ip � 0 when Re(p) > 0, see
the appendix) to give

K̃s(p) = iq

2[
√

ip(tan
√

ip + i) + q]
, (18a)

K̃a(p) = 2λ2(2λ − q)

[1 − (q − 2λ)2](p − iλ2)
− iq

2[
√

ip(cot
√

ip − i) − q]
. (18b)
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Figure 1. The p-plane with the cuts and poles which represents the analytic structure of Ỹ±(p)

for ω > ωs . The circles indicate the poles produced by the ground state (p = iωs + νs + ikω) while
the diamonds indicate the poles coming from the excited state (p = iωa +νa + ikω), k is an integer.

Note that on the imaginary p-axis both K̃s/a(p) in (18) are purely imaginary when Im(p) > 0
and their real parts are positive when Im(p) < 0.

Using the inverse Laplace transformation with c > 0 gives (11) in the form

θs(t) = θ0
s − α

π

∫ c+i∞

c−i∞

ept

p
Ỹ +(p + iγ 2) dp,

θa(t) = θ0
a − β

π

∫ c+i∞

c−i∞

ept

p
Ỹ−(p + iλ2) dp.

(19)

The integrations in (19) have to take into account the structure of Ỹ±(p) which are analytic
in the right half p-plane and singular in the left one, see figure 1. In particular, the location of
poles gives the decay exponents of θs(t) and θa(t) as well as the energy shift of the perturbed
bound levels—the dynamic Stark effect [11, 12]. Our problem now is to solve the recurrence
(17) and after this evaluate the integrals in (19).

3.1. Notation

Before going on to describe our approximate solution of (17) and computation in (19), we
introduce some notation which will be useful later. We define the following functions of p

and ω

Sn = ωαθ0
s

(p + inω − iγ 2)2 + ω2
, An = ωβθ0

a

(p + inω − iλ2)2 + ω2
,

sn = K̃s(p + inω), an = K̃a(p + inω), Ỹ±
n = Ỹ±(p + iωn);

b−
k = Sk + r(sk+1Ak+1 − sk−1Ak−1), c−

k = 1 + r2ak(sk+1 + sk−1),

b+
k = Ak + r(ak+1Sk+1 − ak−1Sk−1), c+

k = 1 + r2sk(ak+1 + ak−1),
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f −
n = a2n

c−
2n

s2n−1, g−
n = a2n

c−
2n

s2n+1, f +
n = s2n

c+
2n

a2n−1,

g+
n = s2n

c+
2n

a2n+1, k, n ∈ Z.

(20)

By eliminating Ỹ− and Ỹ + from (17a) and (17b) respectively equations (17) can be
rewritten in the form of two quasi-independent recurrence relations on a periodic grid with
−ω � Im p < ω

c−
k Ỹ−

k = rb−
k + r2

(
sk+1ak+2Ỹ

−
k+2 + sk−1ak−2Ỹ

−
k−2

)
,

c+
k Ỹ

+
k = rb+

k + r2
(
ak+1sk+2Ỹ

+
k+2 + ak−1sk−2Ỹ

+
k−2

)
.

(21)

4. Approximate solutions

The problem of solving the recurrence relations (21) can be done in principle with any precision
using continuous fractions which represent the solution by a convergent procedure for arbitrary
r and ω [3–5]. In practical terms one can obtain a good approximate solution by truncating
(21), i.e. by assuming Ỹ k ≡ 0 for all k > N or k < −M with some positive N,M depending
on ω and r . Equations (21) then get replaced by a finite set of linear algebraic equations whose
solution will contain products of the functions rsk, rak , see (21). The contributions from terms
with large |k| decay rapidly due to the increasing arguments of sk, ak and powers of r when r

is not too large. If |k| is not large and ωs + kω, ωa + kω are not close to 0 then the coefficients
sk, ak are of order of 1. Near the singularities (see (18) and (20)), i.e. p + ikω = iωs or
p + ikω = iωa , the functions sk, ak become large, but in the strip 0 � Im p < ω this
can happen only for 0 � k � ωs/ω. Therefore for small r one can truncate (21) at some
M = N > ωs/ω and evaluate Ỹ (p) up to O(r2N). Thus all the important terms are included in
the computation, namely up to N -‘photon’ processes. In the case when ωs/ω is large it would
be more effective for computation to take M < N . (Successive truncations give a convergent
procedure for all r , but because the products of rsk, rak will go through their maxima, when
the number of terms in these products grow, a careful evaluation of N,M is needed for
large r).

Choosing N = 3 allows us to get the ionization rates and Stark shifts up to order r6 when
two ‘photons’ are sufficient for the ionization, i.e. when

2ω > ωs + dynamic Stark shift. (22)

For these values of ω the terms which represent three and more photons do not give resonant
contributions. Solving the algebraic system, which comes from the truncated recurrence (21),
we obtain Ỹ±(p) in the form of two fractions whose denominators have only even powers
of r; for details see the appendix. Zeros of these denominators represent the poles of Ỹ

and resonances of ψ̃ . The real and imaginary parts of coordinates of these poles correspond
respectively to the decay exponents of the bound states and the dynamic Stark shifts.

Note that in contrast with the standard perturbation techniques, our approximate analysis
never gives divergences at the resonances. Therefore, the dynamics can be studied for all
frequencies ω > ωs/2 without exceptions. In addition, we have the flexibility to evaluate
terms of different importance to different order in r . The dynamical Stark effect comes
naturally from the computations even in the lowest level of truncation of (21). It appears
that one can have about 1% precision in the decay exponents by dropping terms of order
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r6 for r � 0.5. For computing prefactors we may neglect even terms of order r4, giving
an error of about 6% in the details of the θ(t) oscillations (but this significantly simplifies
calculations because the decay exponents can be found from (21) without actual iterations
there). Comparison with the first-order perturbation theory will be given in section 6.

The poles in figure 1 are shifted into the left half plane from their unperturbed (r → 0)

locations on the imaginary axis by the small (usually) complex numbers νs, νa . The initial
poles at p = iωs and p = iωa represent the ground and excited states respectively. These
are shifted to iωs + νs, iωa + νa and are repeated periodically in iω. They are evaluated in the
process of solving (21) as functions of ω and r . Thus, the sin ωt perturbation creates from
two original poles of the Laplace transform of the unperturbed wavefunction two infinite sets
of resonances of ψ̃(x, p) in the p-plane.

Computation of νs, νa , carried out in the appendix, yields two independent transcendental
equations for the location of the poles of Ỹ± respectively,

νa = −r2β2(s1 + s−1) + r4β2
[
a2s

2
1 + a−2s

2
−1 − ifa(s1 + s−1)

2
]
, at p = iωa + νa,

νs = −r2α2(a1 + a−1) + r4α2
[
s2a

2
1 + s−2a

2
−1 − ifs(a1 + a−1)

2
]
, at p = iωs + νs,

(23)

where an, sn are defined in (20) and

fs = 1 + (q − 2γ )(1 + 2γ − 2q)

4(1 + 2γ − q)2
, fa = 1 + (q − 2λ)(1 + 2λ − 2q)

4(1 + 2λ − q)2
.

Equations (23), in which terms of order r6 are neglected, can be easily solved by iterations.
The properties of K̃s/a(p) imply (see (18) and (23)) that if the ground state can be ionized by
a single photon, i.e. ω > ωs , then both νa and νs have real and imaginary parts of order r2.
When ω decreases and ωa < ω < ωs the real component of νs becomes of order r4 and for
ω < ωa the same happens with Re(νa) too. The real parts are negative and they determine
the decay exponents for the envelopes of θs(t) and θa(t) respectively during the intermediate
stage of their evolution. Im νs and Im νa , which are always of order r2, give the dynamic Stark
shift of the energy levels. The transition from one- to two-photon regimes is also affected by
the Stark effect which is not indicated here for simplicity because the shifts νs, νa depend on
ω and r .

Besides poles the functions Ỹ± also inherit from (18) an infinite set of cuts, see figure 1.
This suggests evaluating the amplitudes θs/a(t) in (19) by deforming the path of integration
into contours around poles and cuts, like we did in [3–5]. For r < 0.6 we may restrict
our analysis to taking into consideration only the poles of Ỹ (p) when computing (19). The
integrals around the cuts give zero contributions to θ(t) at t = 0 and are of order r3. It was
proven rigorously in [3, 4], for the Hamiltonian with one attractive δ-function, that these terms
determine in one dimension the t−3/2 tail of θ(t) when t → ∞ which is similar to the decay
of bound states via tunnel effect at very large t [6]. Only for r2t � 1 (or r4t � 1 in the
two-‘photon’ situation) the integrals around cuts become important (note that when r is large
their contributions cannot be separated from the residues in (19)). Keeping in mind that for
n ∼ 1, ω ∼ 1 and far from resonances sn, an are of order 1 too, we compare two quantities
exp(−r2nt) and r3t−3/2 when t is large. The first term models the exponential decay which
comes from poles for the n-photon processes and the second one describes qualitatively the
contribution from the cuts in figure 1. A simple estimate shows that when t is such that these
terms become equal for r = 0.1, 0.2, 0.5 their values are 1.2 × 10−8, 1.3 × 10−6, 8.4 × 10−4

respectively if n = 1 and 7.6 × 10−12, 6.3 × 10−9, 6.5 × 10−5 if n = 2. Thus, for moderate r

using only the residues of integrands in (19) is a good approximation if t is not very large.
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5. Results

To carry out the integration in (19) we compute (see the appendix) the residues of integrands
there at 14 points p = iλ2 ± inω + νa, p = iγ 2 ± inω + νs with n = 0, 1, 2, 3. The result of
this computation yields analytic expressions (A.7) for the time evolution of projections of the
wavefunction ψ(x, t) on the bound states which are good approximations for all ω > ωs/2
and r < 0.7. A simplified form of (A.7) for r very small, ω not close to resonances,
and |� − ω| � r is

θs(t) = Ts eνs t

(
1 − ir2α2 a1 e2iωt + a−1 e−2iωt

2ω

)
+ 2irαβTa

ω cos ωt + i� sin ωt

ω2 − �2
a

e−i�at ,

θa(t) = Ta eνat

(
1 − ir2β2 s1 e2iωt + s−1 e−2iωt

2ω

)
+ 2irαβTs

ω cos ωt − i� sin ωt

ω2 − �2
s

ei�st ,

(24)

where α, β are defined in (6), (9), � = ωs − ωa and,

Ta ≡ θ0
a − 2irαβωθ0

s

ω2 − �2
a

, Ts ≡ θ0
s − 2irαβωθ0

a

ω2 − �2
s

, �s = � − iνs, �a = � + iνa.

(25)

We dropped here terms of order r3 which decay as linear combinations of eνat and eνs t . In (24)
a1, a−1 are taken at iωs + νs while s1, s−1 at iωa + νa .

Equations (A.7) and sometimes (24, 25) together with (23) are used for all our plots below
where we consider three locations of the excited level corresponding to three different values
of q: (i) q = 1.963 83, (ωa = ωs/2), i.e. the excited level is equidistant from the ground one
and continuum, (ii) q = 1.5046, (ωa = ωs/4), the excited state is closer to continuum and
(iii) q = 2.701 79, (ωa = 3ωs/4) where it is closer to the ground level.

5.1. Decay exponents and Stark effect

Decay exponents of the bound states are twice the real parts of νs, νa , while the dynamic Stark
shifts of the energy levels ωs, ωa are determined by Im νs and Im νa respectively. Far from
resonances one can drop terms O(r4), i.e. neglect νs, νa on the right-hand sides of (23), and
when the one-photon processes are permitted equations (18), (23) yield

Re νs ≈ − r2α2q

2
√

ω − ωs[1 + (cot
√

ω − ωs − q/
√

ω − γ 2)2]
for ω > ωs,

Re νa ≈ − r2β2q

2
√

ω − ωa[1 + (tan
√

ω − ωa + q/
√

ω − λ2)2]
for ω > ωa.

(26)

Closer to the resonances we have to solve equation (23) iteratively and such an explicit
presentation of νs, νa is impossible. In figures 2–4 are plotted the decay parameters for the
cases (i), (ii) and (iii) when r = 0.1.

We can see in (26) and in figures 2–4 that at special frequencies

ω = ωs + l2π2, l = 1, 2, . . . (27)

Re νs ≈ 0 to the lowest order in r2. Thus asymptotically |θs(t)| � |θa(t)|. If

ω = ωa + (l − 1/2)2π2 (28)

the situation is the opposite: Re(νa) ≈ 0 and when t Re(νs) � 1 we have |θa(t)| � |θs(t)|
even for θa(0) = 0 like in figures 2 and 5. The slowly decaying odd state ‘feeds’ the ground
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Figure 2. Plots of log(−Re νs) and log(−Re νa) when ωa = 0.5ωs and r = 0.1.
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Figure 3. Plots of log(−Re ν) when ωa = 0.25ωs.
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Figure 4. Plots of log(−Re ν) for ωa = 0.75ωs .
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Figure 5. Plots of (Im νs)
1/3 and (Im νa)

1/3 when ωa = 0.5ωs and r = 0.1.

state. In terms of the perturbation theory when ω satisfies (27) or (28) vanish the matrix
elements

〈us |V1|φa(k)〉 = 2rqα sin ωt√
πq[1 + (tan k + q/k)2]

, 〈ua|V1|φs(k)〉 = 2rqβ sin ωt√
πq[1 + (cot k − q/k)2]

and thus transitions to the continuum become forbidden. For k = (
l − 1

2

)
π and k = lπ the

eigenfunction (4) or (7) respectively of the continuum spectrum is the same as that of the
free particle, i.e. ∼π−1/2 cos kx or π−1/2 sin kx, which corresponds to the Ramsauer’s effect
[10, 11] when an external particle (an electron) does not interact (scatter) with the potential
field in H0. When the frequency of the perturbation satisfies (27) or (28) the electron being
kicked out of the bound state would get exactly such a momentum k which makes it ‘free’
of interaction. Correspondingly the bound state too cannot interact with the field of this
frequency: the transition is forbidden. This is true only in the lowest order in r , when
the transitions into the continuum spectrum are caused by a single photon whose frequency
satisfies (27) or (28). If ωa < ω < ωs , i.e. the ionization of the ground state requires more
than one photon, (28) does not hold, but this effect is still possible for the excited state (whose
decay otherwise is governed by νa ∼ r2) and both decay exponents, see (23), can be of order
r4. If a−2(iλ2) or s−2(iγ 2) are imaginary (small ω) the decay will be even slower, but we study
here only the situation when the two-photon process is possible, i.e. ω > ωs/2.

It is also seen in figures 2–4 that in the one-photon processes the following holds: (1) the
maximum values of the decay exponents do not depend strongly on the location of the excited
state between the ground one and the continuum, (2) the Ramsauer minima of ν slow down
the decay very sharply (and there the contributions from cuts of Ỹ might be dominant), (3) the
decay exponents in general decrease when ω > 1 increases thus manifesting the behaviour of
the energy level density in our 1D problem [10–12].

The dynamic Stark effect can also be obtained from the solutions of (23). Its dependence
on ω/ωs is shown in figures 5 and 6 for the cases (i) and (ii). Typically the shifts of the
ground and excited energy levels are positive, i.e. they move the levels deeper from their
unperturbed locations ωs, ωa thus ‘resisting’ the ionization. When ω ∼ ωs/2 the levels shift
in the opposite directions (see figure 6): one them goes up but the other becomes slightly more
shallow. This makes the transition between them less probable. This effect might reflect the
fact that trajectories of the solutions of equation (23) ‘repulse’ each other: the bound particle
after absorbing a photon in the ground state ‘does not want’ to get the energy � + Im(νs − νa).
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Figure 6. Plots of (Im νs)
1/3, (Im νa)

1/3 when ωa = 0.25ωs and r = 0.1.
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Figure 7. Plots of log(|θa(t)|2) and log(|θs |2 + |θa |2). Graph of |θa(t)|2 for short times is shown
in the inset.

5.2. Dynamics of energy level population

We consider the time evolution of the survival probabilities for the initial condition
θs(0) = 1, θa(0) = 0. The inter-level transitions partially populate the excited state and
both levels decay initially with their own rates which are generally different. One can expect
that if, (1) the decay exponent of the excited level is smaller than that of the ground state and
(2) the inter-level transitions are not very effective, then the population of the excited state
|θa|2 after some time becomes larger than |θs |2.

In figure 7, we plot the survival probability in a one-photon ionization process for the case
r = 0.1, ωa = ωs/2 and ω = 1.3.

During early times the excited state’s population is very low (see the inset), it oscillates
and decays much slower than the ground state and the ionization goes mainly directly from
the ground level. The decay exponents are νs ≈ −2.8 × 10−3, νa ≈ −3.8 × 10−4. Figure 7
shows that after about 99% of the initial population is ionized what is left is mostly in the
excited level from where it continues to decay. We conclude that the presence of the continuum
spectrum allows the inversion of population in the dynamic regime. Excited states of real atoms
have typically [10, 13] a lifetime T for spontaneous decay of order 10−8 s. Thus, if we map
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Figure 8. Plot of log(|θs(t)|2 + |θa(t)|2) for the 2-photon ionization when ωa = ωs/2. The initial
stage of |θs(t)|2 dynamics is shown in the inset.
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Figure 9. (a) Decay process for ωa = ωs/4, (b) decay process for ωa = 0.75ωs .

our result onto reality the unusual process above would remain almost unaffected because for
example in the visible region we have ωT ∼ (4..7) × 107 while in figure 7(b) the inversion
occurs much earlier: |θa(t)|2| � θs(t)|2 when ωt ∼ 3 × 103. We think that in a real system
this type of the population inversion can also be observed because only a slower decay of
the excited state compared with the ground one is required. Though it does not promise a
practically acceptable efficiency, the lasing medium for the frequency ωs − ωa can occur in a
natural environment near a strong source of radiation, say in the stellar atmospheres.

In figures 8 and 9 we show how the location of the excited level influences the 2-photon
ionization by using the cases (i), (ii) and (iii) with different ωs, ωa introduced earlier for
r = 0.1 and ω ≈ 0.545ωs for all cases. In the insets are plotted |θs(t)|2 for short times to
show the amplitudes of the inter-level transitions.

One can see in figure 8 that the particle jumps between the bound states, but the total
survival probability decays smoothly; the exponents Re νs are Re νa might be different, but
this does not matter because the faster process in this case determines the rate of decay
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Figure 10. (a) Plots of log(|θ(t)|2) for ω > ωs , (b) plots of log(|θ(t)|2) for ωa < ω < ωs .

since the particle spends almost the same time in each level. Transitions between the energy
levels are less effective in figure 9 where log(|θs(t)|2 + |θa(t)|2) are shown and the frequency
of perturbation ω is farther from both frequencies ωa and ωs − ωa . The decay is slower
in both cases compared with figure 8, but in the case (ii) it goes mainly from the ground
state where −Re νs = 5.67 × 10−6 � −Re νa . For ωa = 0.75ωs in figure 9(a), where
−Re νs = 3.53 × 10−5,−Re νa = 1.97 × 10−5, the decay eventually goes mainly from the
excited level: it is faster initially when the ground state is still populated. The insets in figure 9
show |θs |2 on the initial stage of decay. The excited level has about 5% of the ground level
population in the case (ii) and 20–25% in the case (iii). The decay in the form of two
exponents is more visible when the inter-level transitions are not strong (compare figure 9(b)
with figure 8). Though the non-exponential decay is a natural process at later times, in the case
of ω very close to a Stark shifted energy of a bound state even one-level systems exhibit this
property much earlier [3], and such a decay was observed experimentally in unstable systems
even without perturbation [14].

Now we increase the frequency of perturbation in the case (iii). The inversion of
population is possible when both levels need two photons for the ionization, but this inversion
is especially spectacular for the one-photon process in figure 10(a) when ω ≈ 1.2ωs ≈ 1.6ωa

and νa ≈ νs/5. For ω = 0.98ωs = 1.31ωa the ionization of the ground state requires two
photons and thus νa ≈ 50νs ; therefore we observe in figure 10(b) a more usual dynamics: the
slowly decaying ground state feeds the excited one and their very different populations are
falling with same rate. Note that violent oscillations of a low populated level correspond to
shallow invisible ripples on the graph of much more populated one.

A simple analysis of (24) or (A.7) shows that the main frequency which determines
‘periodicity’ of the transitions between the bound states can be ω and |� − ω| on different
stages of the decay. If ω is very large both these frequencies are close or equal to ω that we
observed for ω = 10, ωs = 1.2. Otherwise the level populations oscillate with the frequency
which can be very different from ω as is seen in the insets of figures 8 and 9. In a special case
of |ω − �| < r2 on a short time interval, tr < 1, equations (24) yield in the first order in r

θs(t) ≈ θs(0) − rαβθa(0)t, θa(t) ≈ θa(0) + rαβθs(0)t. (29)

This presents a signature of the Rabi oscillations [16] of the populations |θs(t)|2, |θa(t)|2 in
the form θs(t) = θs(0) cos �t − θa(0) sin �t, θa(t) = θa(0) cos �t + θs(0) sin �t with the
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frequency � = 2rαβ which is equal to the matrix element 〈us |V1|ua〉 for the transitions
between the bound states. These oscillations do not develop later because they require a better
tuning than |ω − �s |, |ω − �a| ∼ r2, see (25), which we have in the presence of transitions
to continuum. We expect that in the case of a multiphoton ionization, the imaginary part of
detuning can be very small and the Rabi beets might dominate the initial stage of evolution.

In the long run both states decay with the same rate because the slower decaying state
supplies the other by the inter-level transitions, but when θs/a(t) are very small the neglected
t−3/2 term, which comes from the branch cuts, might change the whole picture. The physical
origin of this term is transitions to the bound states from the continuum [5]. These transitions
can be more effective for populating one of our states depending on ω. Note that though
the condition of equidistance ωa = ωs/2 used in figure 7 does not hold in figure 10(a), the
population inversion occurs readily.

6. Perturbation theory

The standard perturbation theory for transition into the continuum, which leads to the Fermi
golden rule [17], can be easily implemented for our model when ω > ωs . We iterate once
in (14) to obtain Y± up to the order r2. Substituting the results in (11) we have for the case
θs(0) = 1, θa(0) = 0

θs(t) = 1 − 2r2α2
∫ t

0
Ka(t

′) e−iωs t
′
[(t − t ′) cos ωt ′ − ω−1 sin ω(t − t ′) cos ωt] dt ′.

Using the same reasoning as in [10, 17], letting t become very large while keeping r2t � 1
we neglect all terms but t cos ωt ′ in the square parentheses and consider the integral as the
Laplace transform of K(t). The result reads

θs(t) = 1 − tµs, µs = r2α2[K̃a(iωs − iω) + K̃a(iωs + iω)]. (30a)

Following Fermi [17] we treat (30a) as the series expansion of an exponential function
exp(−µst) which is consistent with (25) (though without terms exp(±2iω)) and µs is equal
to νs given in (23) to order r2. The transitions between the bound states do not fit this scheme
since for ω �= ωs − ωa there are no long time contributions to θ(t) in the Born approximation.

In the case when in the initial state θs(0) = 0, θa(0) = 1 the same approach yields

θa(t) ≈ e−µat , µa = r2β2[K̃s(iωa − iω) + K̃s(iωa + iω)], (30b)

which is consistent with (23) to order r2. Thus, the low order perturbation theory gives the
right answer for the decay exponents and the dynamic Stark effect in the limit r → 0. The full
evaluation of θs(t), θa(t) requires one more iteration in (15) and some modifications in order
to avoid divergences at the resonances.

In figure 11 we plot the ratio of our results for ν and that given by the perturbation
theory, equations (30a, b), Re ν/Re µ versus ω for r = 0.3, 0.5. The divergences between our
method and the perturbation theory become significant near the Ramsauer resonances where
the transition into the continuum becomes of order r4 (the curves in fact go to ∞ because
Re µ = 0 there). Though we study only moderate r our results can be expected to stay reliable
up to r ∼ 0.7.

The ratios Re ν/Re µ as functions of r for two frequencies ω = 1.22 and ω = 1.3 are
shown in figures 12 and 13 for the case ωs ≈ 2ωa .

Though ωs ≈ 1.19 a ‘photon’ with energy 1.22 can ionize the system via the one-photon
process only when r < 0.25. For larger r the Stark effect shifts the ground level down and
for its ionization two such photons are needed. This is not captured by the perturbation theory
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Figure 11. Plots of Re νs/Re µs (solid line) and Re νa/Re µa (dotted line) versus ω for
q ≈ 2, ωs ≈ 1.19 ≈ 2ωa .
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Figure 13. Plots of (Re ν/Re µ) versus r for ω = 1.3.

which fails noticeably for r > 0.18. When ω = 1.3 this effect is clearly weaker: the one-
photon ionization persists for r = 0.5, but the perturbation result is two times larger than Re νs
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for r = 0.44. The ionization of the excited level goes always here via the one-photon process
but, as is seen in figure 13, it varies noticeably when r increases, though the perturbation
theory does not describe this.

All in all the lowest order perturbation theory gives good results for the rate of decay up
to r = 0.5 as long as ω is not near a resonance, see also [18].

7. Discussion and implications for real systems

This work was motivated partially by the following question: does the position of the excited
level strongly influence the ionization process. Our findings are that the results are different
for one- and two-photon ionization.

(a) The one-photon ionization rate for ω > ωs is, in non-resonance conditions, only weakly
affected by the position of the excited state and by the initial populations of the different
levels (figures 2–4). After a relatively short time of redistribution almost all the remaining
bound population stays in one of the bound states (figures 7 and 10).

(b) In the two-photon ionization, when the frequency of the perturbation is approximately
10% higher than one-half of the binding energy of the ground state ωs , the position of
the excited level can be important. When ωa/ωs is 1/4, 3/4 the rate of decay is about
10 and 4 times respectively lower than in the case ωa/ωs = 0.5. The population oscillates
between the two levels almost from 0 to 1 for ωa/ωs = 0.5, but less than 10% for
ωa/ωs = 1/4 and about 25% for ωa/ωs = 3/4. In the latter case the decay process differs
distinctly from exponential if the particle starts in the ground level because the excited
level decays slower. When the frequency of the perturbation is very close to the energy
difference between the bound states their populations, in the initial stage of the decay,
oscillate with the Rabi frequency.

The behaviour of the energy level dynamics found here should be observable
experimentally in a real system with only two discrete states (plus the continuum) or if
these two states are distinctly separated from all others which are close to the continuum.
It is also preferable to study relatively low energy atomic and molecular levels where
transitions only slightly affect the effective potential field so one-particle electronic states
give a good approximation.

(c) The inverse Ramsauer effect makes the decay rate in our model very small at the resonance
frequencies (see figures 2–4) which are different for the two levels. If the inter-level
transitions are low (this should be studied using (A.7) for our model) one might expect a
so-called stabilization at these resonances.

The noble gases, especially the light ones Ar, Xe, Kr, demonstrate a very strong Ramsauer
effect in collisions with electrons at the energies 0.6–0.9 eV [20]. Some simple molecules,
say methane CH4 also have this property. This suggests an experimental check on the
photoionization of these gases by long laser pulses at the corresponding frequencies. For
argon this effect should be expected at wavelengths 75–77 nm, for xenon at 99–101 nm and
for krypton at 77–82 nm, i.e. about 0.5–1 eV above the ionization threshold. There is a
possibility of observing the same effect in experiments with molecular photodetachment [20].

We do not study here short pulse processes which are also sensitive to the shape of pulses.

8. Conclusion

Our model is probably the simplest example (compare, say with [19]) of a system in which one
can explicitly see the interplay between transitions among bound states and the continuum, i.e.
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ionization, caused by an external periodic excitation. It extends previous studies by us [3–5]
and by other authors [2] of a model with only one bound state, where V0(x) = −qδ(x). The
simplicity of our model allows the use of a non-perturbative analysis of its time evolution. This
brings out certain phenomena which we expect to also hold for real systems. We chose the
parameters of the unperturbed system as well as the frequency and amplitude of the external
forcing so that we could construct an approximate analytical solution for the cases of one- and
two-photon ionization and study details of the process in different regimes. The multiphoton
ionization can also be treated by our approximate scheme due to its convergence.

Comparing our results with the standard first-order perturbation theory we find that even
when the latter gives a good approximation to the ionization rate for h̄ω large compared to the
binding energy, it fails (as expected) to take into proper account the role of the excited level in
the ionization. This becomes very important when ω or its multiples are close to resonances,
e.g. to ωs, ωa , or � = ωs − ωa .
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Appendix

A.1. Main details of the computation

Accepting (22) and moderate r we need only Ỹ±
n (p) with 0 � n � 3 and 0 � Im p < ω for

integration in (19). The integration is reduced to the evaluation of residues and due to the fact
that ept/p �= 0 at all poles of Ỹ we compute the residues Res

{
Ỹ±

n (p)
} = X±

n . Obviously these
quantities are the solutions of two homogeneous recurrence relations associated with (21)

c−
k X−

k = r2(ak+2sk+1X
−
k+2 + ak−2sk−1X

−
k−2

)
, c+

kX
+
k = r2(sk+2ak+1X

+
k+2 + sk−2ak−1X

+
k−2

)
,

(A.1)

where −∞ < k < ∞. The condition for convergence

X±
k → 0, when |k| → ∞

gives the location of poles of Ỹ±
k (Fredholm’s alternative). The two recurrences in (A.1) are

formally identical: f −, g− play the same role for X−(p), Ỹ−(p) as f +, g+ for X+(p), Ỹ +(p).
Introducing new variables ρ±

k (p) = c±
2k+2X

±
2k+2

/
c±

2kX
±
2k we represent (A.1) as

ρ±
n = 1

f ±
n+1

(
1

r2
− g±

n−1

ρ±
n−1

)
, n ∈ Z. (A.2)

Using the continuous fraction representation for ρ0 in both directions and equating them after
the truncation we obtain equations for the location of the initial poles

r4
(
f −

1 g−
0 + f −

0 g−
−1

) = 1 at p = iωa + νa;
r4

(
f +

1 g+
0 + f +

0 g+
−1

) = 1 at p = iωs + νs,
(A.3)

where we neglected terms which give corrections of order r6 and higher. Equations (A.3)
imply (23) immediately. One can evaluate approximately

X±
−2 = c±

0 Xpm0

ρ±
−1c

±
−2

, X±
2 = c±

0 ρ±
0 X±

0

c±
2

(A.4)
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in terms of X±
0 as soon as ρ0 and ρ−1 are computed by (A.2):

ρ0 = 1

f1

(
1

r2
− r2g−1f0

1 − r4g−2f−1

)
= g0r

2

1 − r4f2g1
, ρ−1 ≈ r2g−1

1 − r2f1ρ0
,

where we dropped superscripts. This scheme, constructed here for the one- and two-photon
ionization, can be easily generalized. It allows us to use straightforward computations in (21)
only near the points iωs, iωa, iωs − iω, and iωa − iω and then cover the interval from iωa −3iω
to iωs +3iω with the help of functions ρ0, ρ−1. Thus, we neglect all virtual processes involving
more than three photons.

In this spirit one can make only two iterations up and down in the recurrences (21) starting
at k = 0 and obtain their approximate solutions

Ỹ±
0 ≡ Ỹ±(p) = r

b±
0 + r2

(
f ±

1 b±
2 + g±

−1b
±
−2

)
c±

0

[
1 − r4

(
f ±

0 g±
−1 + g±

0 f ±
1

)] . (A.5)

The functions Ỹ±(p) here are analytical in the open right half plane. In the left half plane
there are a number of poles and the horizontal cuts p = inω, n = 0,±1,±2,±3, which are
actually only a part of the two infinite sets involving all integers for the exact solution (see
figure 1). Using (18) and (A.5) one can see that

Ỹ−(iλ2) = −i
θ0
a

2β
, Ỹ +(iγ 2) = −i

θ0
s

2α
,

and therefore from (19) we have in this approximation

θs(∞) = θa(∞) = 0. (A.6)

The complete ionization for all values of r and ω is presented by equation (A.6) which is in
fact generically correct in all orders, i.e. n → ∞. This can be proven by methods similar
to those in [5]. We do not explore here the possibility [4, 5] that (A.6) does not hold for
exceptional sets of parameters.

For computing the residues of (A.5) we analyse and simplify it using (20) by neglecting
terms of order r6 and in the numerators sometimes even r4 if they are multiplied by factors
of order 1. The crucial role is played by the structure of K̃s(p) and K̃a(p). Though these
functions have an infinite number of poles only the poles at p = iγ 2 and p = iλ2 will
contribute in (19). Near these poles we have respectively

s0 = K̃s(iγ
2 + ε) = α2

ε
− ifs + O(ε), fs = 1 + (q − 2γ )(1 + 2γ − 2q)

4(1 + 2γ − q)2
,

a0 = K̃a(iλ
2 + ε) = β2

ε
− ifa + O(ε), fa = 1 + (q − 2λ)(1 + 2λ − 2q)

4(1 + 2λ − q)2
.

The functions S±1, A±1 are singular at these points too:

S±1(iγ
2 + ε) = αθ0

s

(
∓ i

2ε
+

1

4ω

)
+ O(ε), A±1(iλ

2 + ε) = βθ0
a

(
∓ i

2ε
+

1

4ω

)
+ O(ε).
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A careful but straightforward computation of Res
{
Ỹ±

j

}
on the interval [0, ω] with

j = 0, 1,−1 and using (A.3) yields eventually θs, θa in the form

θs(t) = eνs t

(
1 +

iνs

2ω

a1 e2iωt − a−1 e−2iωt

a1 + a−1

)
R2

U2

+ irαβ e−i�at

[(
eiωt

ω − �a

+ r2s1a2
e3iωt

3ω − �a

)
R3

U3

+

(
e−iωt

ω + �a

+ r2s−1a−2
e−3iωt

3ω + �a

)
R5

U3

]
,

θa(t) = eνat

(
1 +

iνa

2ω

s1 e2iωt − s−1 e−2iωt

s1 + s−1

)
R1

U1
+ irαβ ei�st

[(
e−iωt

ω − �s

+ r2a1s2
e3iωt

3ω + �s

)
R4

U4

+

(
e−iωt

ω + �a

+ r2a−1s−2
e−3iωt

3ω − �s

)
R6

U4

]
.

(A.7)

Here we use the notations

R1 = −r2β2θ0
a

[
s1 + s−1 + r2s1s−1(a2 + a−2)

νa

+ i
s1 − s−1

2ω

]

− 2irαβωθ0
s

[
1 + r2a−2s−1

ω2 − �2
a

+
2r2a2s1

(ω + �a)(3ω − �a)

]
,

R2 = −r2αθ0
s

[
a1 + a−1 + r2a1a−1(s2 + s−2)

νs

+ i
a1 − a−1

2ω

]

− 2irαβωθ0
a

[
1 + r2s2a1

ω2 − �2
s

+
2r2s−2a−1

(ω + �s)(3ω − �s)

]
,

R3 = θ0
a

[
1 +

iνa

2ω
+ r2s−1

(
a−2 +

iβ2

ω

)]

− 2irαβωθ0
s

[
1 − iνafaβ

−2 + r2s−1a−2

ω2 − �2
a

− a2
r2s−1 + νaβ

−2

ω2 − (2ω − �a)2

]
,

R4 = θ0
s

[
1 +

iνs

2ω
+ r2a−1

(
s−2 +

iα2

ω

)]

− 2irαβωθ0
a

[
1 − iνsfsα

−2

ω2 − �2
s

+
2r2s−2a−1

(ω + �s)(3ω − �s)

]
,

R5 = θ0
a

[
1 − iνa

2ω
+ r2s1

(
a2 − iβ2

ω

)]

− 2irαβωθ0
s

[
1 − iνafaβ

−2

ω2 − �2
a

+
2r2a2s1

(ω + �a)(3ω − �a)

]
,

R6 = θ0
s

[
1 − iνs

2ω
+ r2a1

(
s2 − iα2

ω

)]

− 2irαβωθ0
a

[
1 − iνsfsα

−2 + r2a1s2

ω2 − �2
s

− s−2
r2a1 + νsα

−2

ω2 − (2ω − �s)2

]
.
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The functions Un involve the derivatives of a(p), s(p)

U1 = 1 + r2[β2(s ′
1 + s ′

−1) + (a2 − ifa)(s1 + νas
′
1) + (a−2 − ifa)(s−1 + νas

′
−1)],

U2 = 1 + r2[α2(a′
1 + a′

−1) + (s2 − ifs)(a1 + νsa
′
1)) + (s−2 − ifs)(a−1 + νsa

′
−1)],

U3 = U1 + r4β2(a2 + a−2)(s
′
1s−1 + s1s

′
−1), U4 = U2 + r4α2(s2 + s−2)(a

′
1a−1 + a1a

′
−1).

All the functions sk, an which define θ(t) here should be evaluated at pa if k is odd and n is
even, but at ps if k is even and n is odd.

The truncation procedure for solving the recurrence (21) can be implemented effectively
for the multiphoton ionization too when r is small using the following technique. Let
|ωs/ω − N | < 1, |ωa/ω − M| < 1 for some positive integers N,M . It is easy for an
approximate calculation to figure out which functions sn, am can be large on the interval
0 � Im p < ω and iterate one or two steps (depending on r) up and down near N and M
neglecting corresponding Ỹ±

k . This will allow us to construct a close algebraic set from (21).
We leave details of this approach for the future.

A.2. Poles of functions K̃s/a .

The Laplace transforms of functions Ks/a(t) (15) can be written in the form

K̃s(p) = α2

p − iγ 2
+

q

π

∫ ∞

0

dk

(p + ik2)[1 + (tan k + q/k)2]
,

(A.8)

K̃a(p) = β2

p − iλ2
+

q

π

∫ ∞

0

dk

(p + ik2)[1 + (cot k − q/k)2]
.

For the contour integration in (A.8) one needs to know the location of poles in the integrands.
The relation 1 + (tan k + q/k)2 = 0 is equivalent to a pair of equations

1 + e2ik +
2ik

q
= 0, 1 + e−2ik − 2ik

q
= 0, (A.9)

whose solutions differ in sign. Defining temporarily for convenience new quantities
q + 2ik = ρs exp(iϕs) we rewrite one of the equations (A.9) as

ρs sin ϕs = (2n − 1)π + ϕs, ρs cos ϕs = q − ln q + ln ρs, (A.10)

where n ∈ Z and 0 < ϕs < π if n � 1, π < ϕs < 2π if n � −1, ϕs = π , when n = 0.
The case n = 0, ϕs = π yields the solution corresponding to the bound state k = iγ , for each
other n (A.10) has a single solution kn with Im(kn) < 0 and the following asymptotics

Re(k) → nπ, Im(k) → −ln|n|. (A.11)

The equation 1 + (cot k − q/k)2 = 0, after its reduction to e2ik = 1 + 2ik/q and using the
notation q + 2ik = ρa exp(iϕa), gives

ρa sin ϕa = 2nπ + ϕa, ρa cos ϕa = q − ln q + ln ρa, (A.12)

where 0 < ϕa < π if n � 1 and π < ϕa < 2π if n � −1. For n = 0 we get ϕa = 0 and
k = iλ. When n �= 0 equation (A.12) for each n produces a single root in the lower half
plane with the asymptotics (A.11). These solutions should be supplemented with a similar set
having the opposite sign. Let us consider for example the first of the integral terms in (A.8).
We rewrite it as

q

2π

∫ ∞

−∞

dk

(p + ik2)(tan k + i + q/k)(tan k − i + q/k)
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and transform it into the form

qi

2π

∫ ∞

−∞

k(e2ik + 1) dk

(p + ik2)[2ik + q(e2ik + 1)]
,

which permits us to close the contour of integration over the upper half plane. The crucial
point is the presence of only two poles of the integrand inside the contour: at k = √

ip and
k = iγ because the infinite set of other poles is located in the lower half plane. A simple
evaluation of residues yields (18a). For the (18b) the technique is similar, but the second pole
occurs at k = iλ when q > 1. It is absent for q < 1.
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